Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	NCHC503	Computational Techniques in Chemical Engineering	3	1	0	4

Course Objective

- To lay a solid foundation for introductory and advanced computational techniques that are relevant in solving a wide variety of chemical engineering problems.
- Essentially, it is an advanced numerical analysis course at the postgraduate level that stresses on understanding the various numerical schemes, and a comparative assessment of the various advantages and limitations of such schemes.

Learning Outcomes

The students will

- be proficient in solving chemical engineering problems using computational techniques and tools.
- be able to make an informed choice regarding selecting/discarding a particular numerical scheme while attempting to solve a problem numerically.
- develop a solid and fundamental understanding of numerical methods, that is indispensable towards
 writing in-house codes, or employing commercial numerical solvers for solving an engineering
 problem of interest.

Unit No.	Description of Lectures	Class Hours	Learning Outcomes
1.	Introduction to computational tools and techniques: Motivation for adopting numerical techniques towards solving problems in science and engineering; Error analysis: Truncation and round-off errors, representation of errors, accuracy and precision.	2 L + 0 T	Students will understand the diverse application of computational methods, and will get acquainted with the basics of error estimation and analysis.
2.	Numerical approach to obtaining roots of single-variable equation and multivariable equations: Classification of root-finding methods (open and bracketing methods); Study of different open and bracketing methods like bisection, regula-falsi, successive substitution, Newton-Raphson, secant; Different methods for solving polynomial equations like Horner's method, Müller's method; Multivariable Newton-Raphson method	5 L + 2 T	Students will learn to solve algebraic and transcendental non-linear equation(s) using a number of numerical schemes. They will also comprehend the advantages and limitations of each of these methods.
3.	Numerical solution of system of linear algebraic equations: Gauss elimination; Gauss-Jordan; Gauss-Siedel; LU decomposition; Cholesky decomposition; QR factorisation, Tridiagonal matrix algorithm approaches	5L+3T	Students will learn to solve system of linear equations, especially sparse systems using computationally efficient algorithms.

4.	Numerical optimisation: Unconstrained optimisation: single- and multi-dimensional; Constrained optimisation	5 L + 2 T	Students will learn the basics of optimization, and their application towards solving diverse range of chemical engineering problems.
5.	Regression and Interpolation: Linear and non- linear regression analysis; Newton's forward, backward and divided interpolation; Lagrange's interpolation; Spline interpolation; orthogonal polynomials	6 L + 2 T	Students will get acquainted with regression and interpolation in order to model datasets.
6.	Numerical solution of ordinary differential equations (ODEs): Types of ODEs; Initial value problems: Euler and Runge-Kutta methods; collocation methods; System of ODEs and adaptive Runge-Kutta methods; Boundary value problems: shooting and finite difference methods; stiff ODEs, stability and convergence in ODEs; solution of differential algebraic systems (DAEs)	9 L + 3 T	Students will get exposed to a diverse range of linear and non-linear ODEs arising in chemical engineering, and specialized techniques to solve them depending on their stiffness
7.	Numerical solution of partial differential equations (PDEs): Classification of second order linear PDEs; Use of various finite difference-based algorithms to solve elliptic and parabolic PDEs arising in chemical engineering; introduction to finite element methods	10 L + 2 T	Students will learn the basics of PDEs, and how to solve parabolic and elliptic PDEs using finite difference and finite element schemes.
	Total	56	

Textbooks:

- 1. Steven C. Chapra and Raymond P. Canale (2021), Numerical Methods for Engineers 8th ed., McGraw Hill.
 - 2. Joe D. Hoffman (2001), Numerical Methods for Engineers and Scientists 2nd ed., CRC Press.

Reference books:

- 1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007), Numerical Recipes: The Art of Scientific Computing 3rd ed., Cambridge University Press.
- 2. Santosh K. Gupta (2019), Numerical Methods for Engineers 4th ed., New Age International Publishers.
- 3. Mark E. Davis (2013), Numerical Methods and Modelling for Chemical Engineers, Dover Publications.
- 4. Alkis Constantinides and Navid Mostoufi (1999), Numerical Methods fort Chemical Engineers with MATLAB Applications, Prentice Hall.